VALPO: Valid statistical Analysis of Longitudinal compositional and high-dimensional microbiome data to Predict health Outcomes

Equipo asociado
VALPO

Associate Team

Starting year: 2025

Ending year: 2027

 

 

 

 

Leading institutions:

  • SISTM project-team, Inria Centre at Université de Bordeaux, Inria (France)

  • Centro de Investigación y Modelamiento de Fenómenos Aleatorios – Valparaíso (CIMFAV), Universidad de Valparaíso (Chile)

Collaborating institutions:

  • Universidad Adolfo Ibáñez (Chile)

  • Inria Chile (Chile)

  • CHU Bordeaux Pellegrin/Inserm (France)

  • PLEIADE project-team, Inria Centre at Université de Bordeaux, Inria (France)

Coordinators

Cristian Meza
Cristian Meza
CIMFAV, Universidad de Valparaíso

 

Project summary

The VALPO project (Valid statistical Analysis of Longitudinal compositional and high-dimensional microbiome data to Predict health Outcomes) aims to advance statistical methods for analyzing complex microbiome data. This collaboration focuses on longitudinal, compositional, and high-dimensional datasets, which are challenging due to their sparsity, zero-inflation, and intricate dependencies over time.  

The project builds on previous efforts involving the initial core teams of Inria SISTM, Universidad de Valparaíso (CIMFAV), CHU Bordeaux, and Inserm. It is further strengthened by the addition of new teams, including Pleiade, Universidad Adolfo Ibáñez, and Inria Chile, bringing complementary expertise. The research will extend previous work through new methodologies for visualizing longitudinal microbiome data, SAEM-based approaches for identifying disease-associated microbial features, and machine learning techniques to predict health outcomes.  

The collaboration combines statistical expertise from Chile and France, with applications in chronic diseases such as asthma, cystic fibrosis, and the analysis of microbial translocation in blood samples to predict vaccine responses. These examples are not exhaustive, as other applications using open-access data from published studies will also be explored to illustrate the utility of the algorithmic developments.

Team

In France: 

  • Marta Avalos-Fernandez, researcher, coordinator VALPO project, ISTM project-team, Inria Centre at Université de Bordeaux, Inria

  • Rodolphe Thiébaut, researcher, SISTM project-team, Inria Centre at Université de Bordeaux, Inria

  • Antonin Colajanni, PhD student, SISTM project-team, Inria Centre at Université de Bordeaux, Inria

  • Céline Hosteins, MSc student, SISTM project-team, Inria Centre at Université de Bordeaux, Inria

  • Clémence Frioux, researcher, PLEIADE project-team, Inria Centre at Université de Bordeaux, Inria

  • Simon Labarthe, researcher, PLEIADE project-team, Inria Centre at Université de Bordeaux, Inria

  • Guilhem Sommeria-Klein, researcher, PLEIADE project-team, Inria Centre at Université de Bordeaux, Inria

  • Laurence Delhaes, researcher, Inserm / CHU Bordeaux

  • Raphaël Enaud, researcher, Inserm / CHU Bordeaux

In Chile: 

  • Cristian Meza, researcher, coordinator VALPO project, CIMFAV, Universidad de Valparaíso

  • Karine Bertin, researcher, Universidad de Valparaíso

  • Soledad Torres, researcher, Universidad de Valparaíso

  • Ramon Sotomayor, researcher, Universidad de Valparaíso

  • John Barrera, PhD student, Universidad de Valparaíso

  • Gabriela Gutierrez, bachelor student, Universidad de Valparaíso

  • Susana Eyheramendy, researcher, Universidad Adolfo Ibañez

  • Nayat Sanchez-Pi, researcher, Inria Chile

  • Luis Martí, researcher, Inria Chile